Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wolfgang Kliegel, ${ }^{\text {a }}$ Klaus
Drückler, ${ }^{\text {a }}$ Brian O. Patrick, ${ }^{\text {b }}$
Steven J. Rettig ${ }^{\mathbf{b}}$ and James Trotter ${ }^{\text {b }}$ *
${ }^{\mathrm{a}}$ Institut für Pharmazeutische Chemie, Technische Universität Braunschweig,
Beethovenstraße 55, 38106 Braunschweig,
Germany, and ${ }^{\mathbf{b}}$ Department of Chemistry,
University of British Columbia, Vancouver, BC, Canada V6T 1Z1

Correspondence e-mail:
brian@xray1.chem.ubc.ca

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.081$
$w R$ factor $=0.264$
Data-to-parameter ratio $=14.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Triphenylboroxin N,N-diethylhydroxylamine adduct (dimethylformamide solvate)

N, N-Diethylhydroxylamine $(O-B)$ triphenylboroxin $\quad N, N$-dimethylformamide [2-(diethylammoniooxy)-2,4,6-triphenyl-1,3,5-trioxa-4,6-dibora-2-boratacyclohexane $\quad \mathrm{N}, \mathrm{N}$-dimethylformamide], $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~B}_{3} \mathrm{NO}_{4} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, contains one molecule of N, N-diethylhydroxylamine in its N-oxide form added to a boroxin heterocycle, with N, N-dimethylformamide solvent linked by an $\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bond to the protonated hydroxylamine moiety.

Comment

The reaction of triphenylboroxin (or 3 mol of phenylboronic acid) with N, N-diethylhydroxylamine and N, N-dimethylformamide results in the formation of a crystalline 1:1:1 adduct, the structure of which could not be established unambiguously by simple spectroscopic methods. [Similar 1:1:1 adducts are obtained from various triarylboroxins with different N -alkyl- and N, N-dialkylhydroxylamines, and several N -alkyl- and N, N-dialkylformamides and -acetamides (Kliegel \& Drückler, 2002).] Since amide $O-B$ adducts to boron compounds are generally known (Kliegel et al., 1989, and references therein) and amine $N-B$ adducts to boroxins have been reported (Yalpani \& Boese, 1983, and references therein; Ferguson et al., 1990), the dual addition product (I) had to be

(I)

(III)

(II)

(IV)
considered a likely structure. Also, an isomeric complex, (II), containing the $O-B$-coordinated N, N-diethylhydroxylamine in its N-oxide form, is suggested by already established structures of $O-B$-coordinated boron complexes of N-mono-

Received 19 June 2002
Accepted 4 July 2002
Online 12 July 2002
alkylhydroxylamines (Kliegel et al., 1992, 1992a) and N, N dialkylhydroxylamines (Kliegel et al., 1992b). The BOBON ring part in the alternative structure, (III), formed by twofold $N-B / O-B$ coordination of the hydroxylamine to the boroxin ring, is reminiscent of the BOBON heterocyclic ring part in the bicyclic compounds from N, N-dialkylhydroxylamines and phenylboronic acid (Kliegel et al., 1991, 2002). The X-ray analysis, however, reveals that none of these three molecular constitutions (I)-(III) is realised, but rather the structure (IV), a dimethylformamide solvate of an N, N-diethylhydroxylamine triphenylboroxin $O-B$ adduct. Obviously, the dimethylformamide O atom prefers the interaction with the Brönsted acid ammonium $\mathrm{N}-\mathrm{H}$ rather than with the Lewis acid boron moiety, forming an $\mathrm{O} \cdots \mathrm{H}-\mathrm{N}^{+}$hydrogen bond.

The structure of (IV) (Fig. 1) was determined initially with room-temperature data, which indicated considerable thermal motion. Anomalous displacement parameters and bond distances were noted for one N-ethyl substituent and, to a lesser extent, for the dimethylformamide solvent. Attempts to refine disordered models for the C21/C22 ethyl group and for the $\mathrm{N} 2 \mathrm{Me}_{2}$ moiety were unsuccessful. Efforts were therefore made to collect data at lower temperature. Rapid cooling to 173 K resulted in break-up of the crystal and loss of the singlecrystal diffraction pattern. Slow cooling revealed loss of the diffraction pattern at about 273 K , probably corresponding to a phase change. Data were recollected at 273 K , and the results (reported here), while still not completely satisfactory (high R values, poor geometry in the ethyl groups, etc.), do establish the molecular structure unambiguously. The 294 K results are very similar, with slightly larger cell edges as expected $(13.049,14.090$ and $7.932 \AA$, and $92.84,97.18$ and 71.88°), and displacement parameters about 30% larger than those at 273 K .

The crystal structure of (IV) contains a six-membered boroxin ring which has a shallow envelope conformation with B1 on the 'flap', caused by one tetrahedral $s p^{3}$-hybridized (B1) and two trigonal $s p^{2}$-hybridized B atoms, which force a roughly planar $\mathrm{O} 1-\mathrm{B} 2-\mathrm{O} 2-\mathrm{B} 3-\mathrm{O} 3$ ring part and two very short $\mathrm{O}-\mathrm{B}$ bonds with considerable π-bond character: $\mathrm{O} 1-$ B2 [1.346 (4) \AA] and O3-B3 [1.343 (3) \AA). This resembles the geometry of other boroxin ring systems containing one tetracoordinated B atom (Kliegel et al., 1985). The exocyclic $\mathrm{O} 4-\mathrm{B} 1$ bond length $[1.508(3) \AA$] is similar to the $\mathrm{O}-\mathrm{B}$ distances (1.492-1.511 \AA) of other N-alkylhydroxylamine $O-B$ adducts to cyclic phenylboronates (Kliegel et al., 1992, 1992a,b).

The dimensions of the N, N-dimethylformamide molecule correspond to those expected, with some double-bond character for the $\mathrm{N}-\mathrm{C}(\mathrm{O})$ bond $[\mathrm{N} 2-\mathrm{C} 23=1.330(8) \AA]$; the π bond order estimated from a bond length versus HMO- π bond order plot (Häfelinger, 1970) is 0.66 , and that calculated (Paolini, 1990) is 0.65 . The double-bond character of the amide $\mathrm{C}=\mathrm{O}$ is retained, however, for the most part [C23$\mathrm{O} 5=1.22$ (1) \AA], with a π-bond order of 0.80 (estimated) and 0.94 (calculated). The protonated N, N-diethylhydroxylamine moiety and the N, N-dimethylformamide molecule are linked by an $\mathrm{N} 1-\mathrm{H} 30 \cdots \mathrm{O} 5$ hydrogen bond; $\mathrm{N} \cdots \mathrm{O}=2.741$ (5), $\mathrm{N}-$
$\mathrm{H}=0.90$ (3) and $\mathrm{H} \cdots \mathrm{O}=1.92$ (3) \AA, and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=$ $152(2)^{\circ}$; there is also an intra-boroxine contact which might represent a bifurcation of this hydrogen-bond system; N1$\mathrm{H} 30 \cdots \mathrm{O} 3, \mathrm{~N} \cdots \mathrm{O}=2.817$ (3) and $\mathrm{H} \cdots \mathrm{O}=2.38$ (3) \AA, and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}=110(2)^{\circ}$.

Experimental

Preparation of N, N-diethylhydroxylamine $(O-B)$ triphenylboroxin N, N-dimethylformamide, (IV). Method A: triphenylboroxin (1.56 g , $5 \mathrm{mmol}), N, N$-diethylhydroxylamine ($0.45 \mathrm{~g}, 5 \mathrm{mmol}$), and N, N-dimethylformamide ($0.37 \mathrm{~g}, 5 \mathrm{mmol}$) were dissolved in 15 ml of chloroform and slightly warmed. After addition of a small amount of cyclohexane, crystallization commenced. Yield: 1.63 g (69%) of colorless crystals; m.p. $385-386 \mathrm{~K}$ (from ether). Method B: to a solution of phenylboronic acid ($1.83 \mathrm{~g}, 15 \mathrm{mmol}$) in 20 ml ether, N, N diethylhydroxylamine ($0.45 \mathrm{~g}, 5 \mathrm{mmol}$) and N, N-dimethylformamide $(0.37 \mathrm{~g}, 5 \mathrm{mmol})$ were added. After 30 min at room temperature, crystallization commenced. The crystals were separated after 1 h . Yield: $1.02 \mathrm{~g}(43 \%)$ of colorless crystals which are analytically pure; m.p. $385-386 \mathrm{~K}$ (from ether). The mother liquor was evaporated to obtain additional material. IR (KBr): $1675(\mathrm{~N}-\mathrm{C}=\mathrm{O}), 1600 \mathrm{~cm}^{-1}$ (phenyl-C=C). ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{TMS}$), δ (p.p.m.): 1.34 (t, $\left.J=5 \mathrm{~Hz}, 2 \mathrm{C}-\mathrm{CH}_{3}\right), 2.50$ and $2.60\left[s\right.$ and $\left.s, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.21(q, J=5 \mathrm{~Hz}$, $\left.2 \mathrm{CH}_{2}-\mathrm{C}\right), 7.02-8.19(m, 15$ aromatic H$), 7.51(s, \mathrm{O}=\mathrm{CH}), 9.29(s$, broad, exchangeable, NH). ${ }^{11} \mathrm{~B}$ NMR ($64 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{Et}_{2} \mathrm{OBF}_{3}$), δ (p.p.m.): $29.3\left(w_{1 / 2}=600 \mathrm{~Hz}\right), 7.3\left(w_{1 / 2}=300 \mathrm{~Hz}\right)$. Analysis calculated for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~B}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}$: C 63.35, H 7.02, N 5.91%; found: C 63.20, H 7.10, N 5.75%. Single crystals suitable for X-ray crystallographic anaylsis were obtained from the ether solution of the reaction product (method B) without recrystallization.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~B}_{3} \mathrm{NO}_{4} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$M_{r}=473.98$
Triclinic, $P \overline{1}$
$a=13.0046$ (7) \AA
$b=14.071$ (1) \AA
$c=7.9235$ (8) \AA
$\alpha=92.79(2)^{\circ}$
$\beta=96.95(2)^{\circ}$
$\gamma=71.85(1)^{\circ}$
$V=1367.5(2) \AA^{3}$
$Z=2$
$D_{x}=1.151 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5239
reflections
$\theta=3.0-25.0^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=273 \mathrm{~K}$
Prism, colorless
$0.50 \times 0.25 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku/ADSC CCD diffractometer
CCD scans (both φ and ω scans)
Absorption correction: multi-scan (d^{*} TREK; Molecular Structure
Corporation, 1997)
$T_{\text {min }}=0.96, T_{\text {max }}=0.99$
11054 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.081$
$w R\left(F^{2}\right)=0.264$
$S=1.40$
4675 reflections
320 parameters

4675 independent reflections 2346 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-15 \rightarrow 15$
$k=-16 \rightarrow 16$
$l=-9 \rightarrow 9$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+0.0025\left(F_{o}{ }^{2}\right)^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.05$
$\Delta \rho_{\max }=0.56 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

O1-B1	$1.477(4)$	C4-C5	$1.358(7)$
O1-B2	$1.346(4)$	C5-C6	$1.393(6)$
O2-B2	$1.384(4)$	C7-C8	$1.392(4)$
O2-B3	$1.390(3)$	C7-C12	$1.385(4)$
O3-B1	$1.475(4)$	C7-B2	$1.563(4)$
O3-B3	$1.343(3)$	C8-C9	$1.396(4)$
O4-N1	$1.411(4)$	C9-C10	$1.354(5)$
O4-B1	$1.508(3)$	C10-C11	$1.359(5)$
O5-C23	$1.22(1)$	C11-C12	$1.383(4)$
N1-C19	$1.454(4)$	C13-C14	$1.388(4)$
N1-C21	$1.610(8)$	C13-C18	$1.393(4)$
N2-C23	$1.330(8)$	C13-B3	$1.554(4)$
N2-C24	$1.44(1)$	C14-C15	$1.384(4)$
N2-C25	$1.36(1)$	C15-C16	$1.367(5)$
C1-C2	$1.396(5)$	C16-C17	$1.360(5)$
C1-C6	$1.383(4)$	C17-C18	$1.374(4)$
C1-B1	$1.595(5)$	C19-C20	$1.416(7)$
C2-C3	$1.371(5)$	C21-C22	$1.24(1)$
C3-C4	$1.368(6)$		
B1-O1-B2	$121.9(2)$	C7-C12-C11	$121.5(3)$
B2-O2-B3	$119.2(2)$	C14-C13-C18	$116.7(3)$
B1-O3-B3	$122.2(2)$	C14-C13-B3	$122.4(2)$
N1-O4-B1	$114.3(2)$	C18-C13-B3	$120.9(2)$
O4-N1-C19	$110.2(3)$	C13-C14-C15	$120.7(3)$
O4-N1-C21	$111.6(4)$	C14-C15-CC16	$120.7(3)$
C19-N1-C21	$113.9(4)$	C15-C16-C17	$119.8(3)$
C23-N2-C24	$122.9(9)$	C16-C17-C18	$119.8(3)$
C23-N2-C25	$115.5(9)$	C13-C18-C17	$122.2(3)$
C24-N2-C25	$121.4(7)$	N1-C19-C20	$111.3(4)$
C2-C1-C6	$115.3(3)$	N1-C21-C22	$112.8(9)$
C2-C1-B1	$122.7(3)$	O5-C23-N2	$127.8(9)$
C6-C1-B1	$121.9(3)$	O1-B1-O3	$109.9(2)$
C1-C2-C3	$123.0(4)$	O1-B1-O4	$108.3(2)$
C2-C3-C4	$119.6(4)$	O1-B1-C1	$111.8(2)$
C3-C4-C5	$119.8(4)$	O3-B1-O4	$108.5(2)$
C4-C5-C6	$120.1(4)$	O3-B1-C1	$112.4(3)$
C1-C6-C5	$122.1(4)$	O4-B1-C1	$105.6(2)$
C8-C7-C12	$116.9(3)$	O1-B2-O2	$120.9(2)$
C8-C7-B2	$120.5(3)$	O1-B2-C7	$119.9(3)$
C12-C7-B2	$122.5(3)$	O2-B2-C7	$119.2(2)$
C7-C8-C9	$121.1(3)$	O2-B3-O3	$120.4(3)$
C8-C9-C10	$119.9(3)$	O2-B3-C13	$119.2(2)$
C9-C10-C11	$120.4(3)$	O3-B3-C13	$120.4(2)$
C10-C11-C12	$120.2(3)$		

Atom H30 (bonded to N1) was refined and all other H atoms were fixed.

Data collection: d^{*} TREK (Molecular Structure Corporation, 1997); cell refinement: $d^{*} T R E K$; data reduction: TEXSAN (Molecular Structure Corporation, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: TEXSAN; molecular graphics: TEXSAN; software used to prepare material for publication: TEXSAN.

The authors thank the Natural Sciences and Engineering Research Council of Canada and the Fonds der Chemische Industrie, Frankfurt am Main, for financial support.

Figure 1
View of the title structure, with ellipsoids at the 30% probability level.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Ferguson, G., Lough, A. J., Sheehan. J. \& Spalding, T. R. (1990). Acta Cryst. C46, 2390-2392.
Häfelinger, G. (1970). Chem. Ber. 103, 2941-2960.
Kliegel, W. \& Drückler, K. (2002). Unpublished results.
Kliegel, W., Drückler, K., Patrick. B. O., Rettig, S. J. \& Trotter, J. (2002). Acta Cryst. E58, o371-o373.
Kliegel, W., Lubkowitz, G., Rettig, S. J. \& Trotter, J. (1992a). Can. J. Chem. 70, 2015-2021.
Kliegel, W., Lubkowitz, G., Rettig, S. J. \& Trotter, J. (1992b). Can. J. Chem. 70, 2022-2026.
Kliegel, W., Motzkus, H.-W., Rettig, S. J. \& Trotter, J. (1985). Can. J. Chem. 63, 3516-3520.
Kliegel, W., Riebe, U., Rettig, S. J. \& Trotter, J. (1991). Can. J. Chem. 69, 12221226.

Kliegel, W., Schumacher, U., Rettig, S. J. \& Trotter, J. (1992). Can. J. Chem. 70, 1188-1194.
Kliegel, W., Tajerbashi, M., Rettig, S. J. \& Trotter, J. (1989). Can. J. Chem. 67, 1636-1643.
Molecular Structure Corporation (1997). $d^{*} T R E K$ and TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Paolini, J. P. (1990). J. Comput. Chem. 11, 1160-1163.
Yalpani, M. \& Boese, R. (1983). Chem. Ber. 116, 3347-3358.

